Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(18): eadl5067, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701201

RESUMEN

Airborne pathogens retain prolonged infectious activity once attached to the indoor environment, posing a pervasive threat to public health. Conventional air filters suffer from ineffective inactivation of the physics-separated microorganisms, and the chemical-based antimicrobial materials face challenges of poor stability/efficiency and inefficient viral inactivation. We, therefore, developed a rapid, reliable antimicrobial method against the attached indoor bacteria/viruses using a large-scale tunneling charge-motivated disinfection device fabricated by directly dispersing monolayer graphene on insulators. Free charges can be stably immobilized under the monolayer graphene through the tunneling effect. The stored charges can motivate continuous electron loss of attached microorganisms for accelerated disinfection, overcoming the diffusion limitation of chemical disinfectants. Complete (>99.99%) and broad-spectrum disinfection was achieved <1 min of attachment to the scaled-up device (25 square centimeters), reliably for 72 hours at high temperature (60°C) and humidity (90%). This method can be readily applied to high-touch surfaces in indoor environments for pathogen control.


Asunto(s)
Desinfección , Electrónica , Grafito , Desinfección/métodos , Electrónica/métodos , Grafito/química , Viabilidad Microbiana , Bacterias
2.
Exp Mol Med ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689087

RESUMEN

Osimertinib, a selective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), effectively targets the EGFR T790M mutant in non-small cell lung cancer (NSCLC). However, the newly identified EGFR C797S mutation confers resistance to osimertinib. In this study, we explored the role of pyruvate dehydrogenase kinase 1 (PDK1) in osimertinib resistance. Patients exhibiting osimertinib resistance initially displayed elevated PDK1 expression. Osimertinib-resistant cell lines with the EGFR C797S mutation were established using A549, NCI-H292, PC-9, and NCI-H1975 NSCLC cells for both in vitro and in vivo investigations. These EGFR C797S mutant cells exhibited heightened phosphorylation of EGFR, leading to the activation of downstream oncogenic pathways. The EGFR C797S mutation appeared to increase PDK1-driven glycolysis through the EGFR/AKT/HIF-1α axis. Combining osimertinib with the PDK1 inhibitor leelamine helped successfully overcome osimertinib resistance in allograft models. CRISPR-mediated PDK1 knockout effectively inhibited tumor formation in xenograft models. Our study established a clear link between the EGFR C797S mutation and elevated PDK1 expression, opening new avenues for the discovery of targeted therapies and improving our understanding of the roles of EGFR mutations in cancer progression.

3.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547066

RESUMEN

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Asunto(s)
Vejiga Urinaria , Infecciones Urinarias , Animales , Humanos , Vejiga Urinaria/cirugía , Urodinámica/fisiología , Prótesis e Implantes , Cistectomía
4.
Sci Adv ; 9(44): eadj0461, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37910607

RESUMEN

The automation of organic compound synthesis is pivotal for expediting the development of such compounds. In addition, enhancing development efficiency can be achieved by incorporating autonomous functions alongside automation. To achieve this, we developed an autonomous synthesis robot that harnesses the power of artificial intelligence (AI) and robotic technology to establish optimal synthetic recipes. Given a target molecule, our AI initially plans synthetic pathways and defines reaction conditions. It then iteratively refines these plans using feedback from the experimental robot, gradually optimizing the recipe. The system performance was validated by successfully determining synthetic recipes for three organic compounds, yielding that conversion rates that outperform existing references. Notably, this autonomous system is designed around batch reactors, making it accessible and valuable to chemists in standard laboratory settings, thereby streamlining research endeavors.

6.
Nat Food ; 4(8): 644-645, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37563491
7.
Exp Mol Med ; 55(8): 1573-1594, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37612413

RESUMEN

Death is the inevitable fate of all living organisms, whether at the individual or cellular level. For a long time, cell death was believed to be an undesirable but unavoidable final outcome of nonfunctioning cells, as inflammation was inevitably triggered in response to damage. However, experimental evidence accumulated over the past few decades has revealed different types of cell death that are genetically programmed to eliminate unnecessary or severely damaged cells that may damage surrounding tissues. Several types of cell death, including apoptosis, necrosis, autophagic cell death, and lysosomal cell death, which are classified as programmed cell death, and pyroptosis, necroptosis, and NETosis, which are classified as inflammatory cell death, have been described over the years. Recently, several novel forms of cell death, namely, mitoptosis, paraptosis, immunogenic cell death, entosis, methuosis, parthanatos, ferroptosis, autosis, alkaliptosis, oxeiptosis, cuproptosis, and erebosis, have been discovered and advanced our understanding of cell death and its complexity. In this review, we provide a historical overview of the discovery and characterization of different forms of cell death and highlight their diversity and complexity. We also briefly discuss the regulatory mechanisms underlying each type of cell death and the implications of cell death in various physiological and pathological contexts. This review provides a comprehensive understanding of different mechanisms of cell death that can be leveraged to develop novel therapeutic strategies for various diseases.


Asunto(s)
Apoptosis , Piroptosis , Humanos , Muerte Celular , Necrosis , Inflamación
8.
J Pathol Transl Med ; 57(5): 251-264, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37608552

RESUMEN

BACKGROUND: The Korean Society for Cytopathology introduced a digital proficiency test (PT) in 2021. However, many doubtful opinions remain on whether digitally scanned images can satisfactorily present subtle differences in the nuclear features and chromatin patterns of cytological samples. METHODS: We prepared 30 whole-slide images (WSIs) from the conventional PT archive by a selection process for digital PT. Digital and conventional PT were performed in parallel for volunteer institutes, and the results were compared using feedback. To assess the quality of cytological assessment WSIs, 12 slides were collected and scanned using five different scanners, with four cytopathologists evaluating image quality through a questionnaire. RESULTS: Among the 215 institutes, 108 and 107 participated in glass and digital PT, respectively. No significant difference was noted in category C (major discordance), although the number of discordant cases was slightly higher in the digital PT group. Leica, 3DHistech Pannoramic 250 Flash, and Hamamatsu NanoZoomer 360 systems showed comparable results in terms of image quality, feature presentation, and error rates for most cytological samples. Overall satisfaction was observed with the general convenience and image quality of digital PT. CONCLUSIONS: As three-dimensional clusters are common and nuclear/chromatin features are critical for cytological interpretation, careful selection of scanners and optimal conditions are mandatory for the successful establishment of digital quality assurance programs in cytology.

9.
Curr Res Food Sci ; 7: 100545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455679

RESUMEN

This study compared the cellular and genetic characteristics of bovine skeletal muscle satellite cells (SMSCs) from Hanwoo (a Korean native cattle breed), including calves and mature cattle. SMSCs were isolated using magnetic-activated cell sorting (MACS) from tissue samples of six Hanwoo (three calves and three mature cattle) using the CD29 antibody. Calves' SMSCs exhibited significantly faster growth rates than did those from cattle (P < 0.01), with a doubling time of 2.43 days. Genetic analysis revealed higher MyoD and Pax7 expression in SMSCs from calves during proliferation than in those from mature cattle (P < 0.001). However, FASN and PLAG1 expression levels were higher in mature cattle than in calves during both proliferation and differentiation (P < 0.001). These findings highlight the need for strategies to improve bovine muscle cell growth to produce competitive cultivated meat at a competitive price.

10.
Front Nutr ; 10: 1110613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229478

RESUMEN

This study explored the changes in the physiochemical, textural, sensory, and functional characteristics of plant-based meat (PBM) after incorporating novel plant-based ingredients including spirulina (SPI), duck Weed (DW), and yellow Chlorella (YC). In the chromaticity evaluation, the YC group (YCI YC2, and YC3%) displayed significant differences (p < 0.05) in lightness (L*) indices as compared to the control. Whereas, based on concertation gradient of SPI microalgae (SP0.5, SP0.7, and SP1%) incorporated into PBM patties demonstrated that SPI 1 had the lowest values (p < 0.05) in redness (a*) and yellowness (b*) followed by SPI 0.7 and SPI 0.5% concentration, respectively. The concentration gradient of the YC group indicated that YC3 was intended to be the highest crude fat value followed by YC2 and YCI. The ash content in PBM patties increased considerably (p < 0.05) as the concentration level of microalgae advanced in all treated groups. Based on the concentration level of YC incorporated microalgae into PBM patties indicated that YC 3 had the highest (p < 0.05) gumminess and chewiness while YC 1 had the lowest reported values in terms of gumminess and chewiness. Moreover, springiness and cohesiveness showed considerable differences between SPI and YC groups. In the sensory evaluation, SPI 1 showed the lowest value only in color and appearance (p < 0.05), conversely, the other sensory parameters were non-significant among all treatment groups (p > 0.05). The micronutrient in PBM presented an irregular pattern after incorporating various ingredients. However, levels were higher (p < 0.05) in the DW group (DW 0.5 DW 0.7, and DW% 1) than those in the other groups. Moreover, the SPI and YC groups showed detectable levels of diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with, SP 1 showing the highest level of antioxidant activity. Acknowledging the limited research on PBM production, extraction technologies, and selecting various novel suitable ingredients in meat substitutes. Hence, to fill this knowledge gap an attempt has been made to incorporate various concentrations of microalgae including SPI, YC, and DW to enhance the quality and functionality of meat alternatives. To the best of our knowledge, this is the first report that describes the physiochemical, textural, sensory, and nutritional attributes of PBM incorporated with novel microalgae. Collectively these results indicate that the incorporation of SPI, DW, and YC may improve the quality of PBM without showing deleterious outcomes on the quality and functionality of the ultimate PBM products.

11.
J Anim Sci Technol ; 65(1): 160-174, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37093948

RESUMEN

The purpose of this study was to compare marbling score, meat quality, juiciness, sarcomere length, and skeletal muscle satellite cell (SMSC) growth and related gene expression between Woori black pig (WB) and the Landrace, Yorkshire, and Duroc (LYD) crossbreed at different body weights (b.w.). WB was developed to improve meat quality and growth efficiency by crossbreeding Duroc with Korean native black pig. A total of 24 pigs were sacrificed when their b.w. reached about 50, 75, 100, and 120 kg. SMSC were isolated from the femoris muscles, and muscle and adipose tissues were sampled from the middle and the subcutaneous part of the femoris of hind legs, respectively. Expression levels of genes including Myoblast determination protein 1 (MyoD), Paired box gene 3 (Pax3), Myosin heavy chain (MyHC), and Myogenin, which are responsible for the growth and development of SMSC, were higher in LYD than the WB. Muscle growth inhibitor myostatin (MSTN), however, was expressed more in WB compared to LYD (p < 0.01). Numbers of SMSC extracted from femoris muscle of LYD at 50, 75, 100, and 120 kg b.w. were 8.5 ± 0.223, 8.6 ± 0.245, 7.2 ± 0.249, and 10.9 ± 0.795, and those from WB were 6.2 ± 0.32, 6.2 ± 0.374, 5.3 ± 0.423, and 17.1 ± 0.315, respectively. Expression of adipogenic genes in adipose tissue including CCAAT/enhancer-binding protein (CEBP)-ß, peroxisome proliferator activated receptor (PPAR)-γ, and fatty acid synthase (FASN), were greater in WB when compared with LYD (p < 0.01). Results from the current study suggest that different muscle cell numbers between 2 different breeds might be affected by related gene expression and this warrants further investigation on other growth factors regulating animal growth and development.

12.
Foods ; 12(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36981208

RESUMEN

Color is a major feature that strongly influences the consumer's perception, selection, and acceptance of various foods. An improved understanding regarding bio-safety protocols, health welfare, and the nutritional importance of food colorants has shifted the attention of the scientific community toward natural pigments to replace their toxic synthetic counterparts. However, owing to safety and toxicity concerns, incorporating natural colorants directly from viable sources into plant-based meat (PBM) has many limitations. Nonetheless, over time, safe and cheap extraction techniques have been developed to extract the purified form of coloring agents from raw materials to be incorporated into PBM products. Subsequently, extracted anthocyanin has displayed compounds like Delphinidin-3-mono glucoside (D3G) at 3.1 min and Petunidin-3-mono glucoside (P3G) at 5.1 277, 515, and 546 nm at chromatographic lambda. Fe-pheophytin was successfully generated from chlorophyll through the ion exchange method. Likewise, the optical density (OD) of synthesized leghemoglobin (LegH) indicated that pBHA bacteria grow more rigorously containing ampicillin with a dilution factor of 10 after 1 h of inoculation. The potential LegH sequence was identified at 2500 bp through gel electrophoresis. The color coordinates and absorbance level of natural pigments showed significant differences (p < 0.05) with the control. The development of coloring agents originating from natural sources for PBM can be considered advantageous compared to animal myoglobin in terms of health and functionality. Therefore, the purpose of this study was to produce natural coloring agents for PBM by extracting and developing chlorophyll from spinach, extracting anthocyanins from black beans, and inserting recombinant plasmids into microorganisms to produce LegH.

13.
Oncol Rep ; 49(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36825595

RESUMEN

Metabolic disorder is a major characteristic of cancer cells, and controlling genes involved in metabolic shifts can be an effective strategy for cancer treatment. Andrographolide (AG), a diterpenoid lactone, is widely recognized as a natural anticancer drug due to its ability to inhibit cancer growth. The present study aimed to investigate the mechanism underlying the mitochondrial­mediated anticancer effect of AG by inhibiting pyruvate dehydrogenase kinase 1 (PDK1) expression in lung cancer cells. Cells were treated with AG and PDK1 mRNA and protein expression was determined using reverse transcription­quantitative PCR and western blotting, respectively. As a result, AG significantly inhibited the viability of human lung cancer cells and suppressed aerobic glycolysis by decreasing lactate generation. AG further decreased the PDK1 protein and mRNA levels in a dose­dependent manner. AG­induced cell death was assessed by flow cytometry and fluorescence microscopy. AG induced apoptotic cell death that was associated with the cleavage of poly (ADP ribose) polymerase, activation of caspase­3, and mitochondrial damage, which was associated with an increase in reactive oxygen species and loss of mitochondrial membrane potential. AG­induced cell death was partially suppressed via PDK1 overexpression in lung cancer cells. Therefore, the anticancer effects of AG on human lung cancer cells may negatively regulate the expression of PDK1.


Asunto(s)
Diterpenos , Neoplasias Pulmonares , Humanos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Apoptosis , Diterpenos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Glucólisis , Línea Celular Tumoral , Proliferación Celular
14.
Adv Sci (Weinh) ; 10(3): e2204801, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36437039

RESUMEN

To prevent surgical site infection (SSI), which significantly increases the rate morbidity and mortality, eliminating microorganisms is prominent. Antimicrobial resistance is identified as a global health challenge. This work proposes a new strategy to eliminate microorganisms of deep tissue through electrical stimulation with an ultrasound (US)-driven implantable, biodegradable, and vibrant triboelectric nanogenerator (IBV-TENG). After a programmed lifetime, the IBV-TENG can be eliminated by provoking the on-demand device dissolution by controlling US intensity with no surgical removal of the device from the body. A voltage of ≈4 V and current of ≈22 µA generated from IBV-TENG under ultrasound in vitro, confirming inactivating ≈100% of Staphylococcus aureus and ≈99% of Escherichia coli. Furthermore, ex vivo results show that IBV-TENG implanted under porcine tissue successfully inactivates bacteria. This antibacterial technology is expected to be a countermeasure strategy against SSIs, increasing life expectancy and healthcare quality by preventing microorganisms of deep tissue.


Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Animales , Porcinos , Ultrasonografía , Antibacterianos/uso terapéutico , Estimulación Eléctrica , Escherichia coli
15.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012326

RESUMEN

The present study evaluated the properties and ochratoxin A (OTA) degradation capacity of the dietary probiotic Pediococcus pentosaceus BalaMMB-P3, isolated from a milk coagulant. The acidic tolerance of the isolate at pH 2-3 was checked with bile salts. No hemolytic activity was noted, which confirmed the nonpathogenicity of the strain. The isolate was tested in vitro for antibiotic susceptibility, enzymatic activity, bile salts hydrolase activity and antifungal activity against Penicillium verrucosum, Fusarium graminearum and Aspergillus ochraceus. A molecular docking-based OTA toxicity assessment was carried out for multitargeted proteins. The 16S rRNA gene-based phylogenetic assessment identified the strain as P. pentosaceus, and was authenticated in GenBank. The carboxylesterase and glutathione s-transferase enzymes showed active and strong interactions with esters and amide bonds, respectively. The compound exhibited carcinogenic and cytotoxicity effects at an LD50 value of 20 mg/kg. Furthermore, the strain showed a potent ability to reduce OTA and suggested the prospects for utilization in nutritional aspects of food.


Asunto(s)
Pediococcus pentosaceus , Probióticos , Ácidos y Sales Biliares/metabolismo , Simulación del Acoplamiento Molecular , Ocratoxinas , Pediococcus/metabolismo , Pediococcus pentosaceus/metabolismo , Filogenia , Probióticos/metabolismo , ARN Ribosómico 16S/genética
16.
BMB Rep ; 55(8): 407-412, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35725014

RESUMEN

A well-controlled inflammatory response is crucial for the recovery from injury and maintenance of tissue homeostasis. The anti-inflammatory response of 2-methoxycinnamaldehyde (2-MCA), a natural compound derived from cinnamon, has been studied; however, the underlying mechanism on macrophage has not been fully elucidated. In this study, LPS-stimulated production of TNF-α and NO was reduced by 2-MCA in macrophages. 2-MCA significantly activated the NRF2 pathway, and expression levels of autophagy-associated proteins in macrophages, including LC3 and P62, were enhanced via NRF2 activation regardless of LPS treatment, suggesting the occurrence of 2-MCA-mediated autophagy. Moreover, evaluation of autophagy flux using luciferase-conjugated LC3 revealed that incremental LC3 and P62 levels are coupled to enhanced autophagy flux. Finally, reduced expression levels of TNF-α and NOS2 by 2-MCA were reversed by autophagy inhibitors, such as bafilomycin A1 and NH4Cl, in LPS-stimulated macrophages. In conclusion, 2-MCA enhances autophagy flux in macrophages via NRF2 activation and consequently reduces LPS-induced inflammation. [BMB Reports 2022; 55(8): 407-412].


Asunto(s)
Lipopolisacáridos , Factor 2 Relacionado con NF-E2 , Acroleína/análogos & derivados , Autofagia , Lipopolisacáridos/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
17.
Anim Cells Syst (Seoul) ; 26(1): 37-44, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308125

RESUMEN

Black garlic (BG) is a newly explored food stuff obtained via fermentation of raw, healthy garlic, especially in Asian countries. Interstitial cells of Cajal (ICC) are the pacemaker cells of gastrointestinal (GI) motility. The purpose of this study was to investigate the effects of BG extract on the pacemaker potentials of the ICC in the small intestines of mice and the possibility of controlling GI motility. The antioxidant activity of BG extract was also investigated. The whole-cell electrophysiological method was used to measure pacemaker potentials of the ICC in vitro, whereas GI motility was measured using the intestinal transit rate (ITR) in vivo. BG extract depolarized the pacemaker potentials of the ICC. Y25130 and RS39604 5-HT receptor antagonists could not inhibit the effect of BG extract on the pacemaker potentials of the ICC, whereas the 5-HT receptor antagonist SB269970 could. Pre-treatment with external Na+ (5 mM) or Ca2+-free solution inhibited the BG extract-induced depolarization of the ICC. With SB203580, PD98059, or c-jun NH2-terminal kinase II inhibitor pre-treatment, BG extract did not induce pacemaker potential depolarization. Moreover, the ITR values were increased by BG extract. Elevation of the ITR due to BG extract was related with increased protein expression of the 5-HT7 receptors. In addition, BG extract showed antioxidant activity. Collectively, these results highlight the ability of BG extract to regulate GI motility and the possibility of using it to develop GI motility modulators in the future. Moreover, BG showed immense potential as an antioxidant.

18.
BMB Rep ; 54(11): 563-568, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34488935

RESUMEN

Cancer cells predominantly generate energy via glycolysis, even in the presence of oxygen, to support abnormal cell proliferation. Suppression of PDHA1 by PDK1 prevents the conversion of cytoplasmic pyruvate into Acetyl-CoA. Several PDK inhibitors have been identified, but their clinical applications have not been successful for unclear reasons. In this study, endogenous PDHA1 in A549 cells was silenced by the CRISPR/Cas9 system, and PDHA1WT and PDHA13SD were transduced. Since PDHA13SD cannot be phosphorylated by PDKs, it was used to evaluate the specific activity of PDK inhibitors. This study highlights that PDHA1WT and PDHA13SD A549 cells can be used as a cell-based PDK inhibitor-distinction system to examine the relationship between PDH activity and cell death by established PDK inhibitors. Leelamine, huzhangoside A and otobaphenol induced PDH activity-dependent apoptosis, whereas AZD7545, VER-246608 and DCA effectively enhanced PDHA1 activity but little toxic to cancer cells. Furthermore, the activity of phosphomimetic PDHA1 revealed the complexity of its regulation, which requires further in-depth investigation. [BMB Reports 2021; 54(11): 563-568].


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Evaluación de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Neoplasias Pulmonares/patología , Piruvato Deshidrogenasa (Lipoamida)/antagonistas & inhibidores , Células A549 , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Inhibidores Enzimáticos/química , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Fosforilación
19.
J Anim Sci Technol ; 63(4): 681-692, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34447948

RESUMEN

Environment, food, and disease have a selective force on the present and future as well as our genome. Adaptation of livestock and the environmental nexus, including forest encroachment for anthropological needs, has been proven to cause emerging infectious diseases. Further, these demand changes in meat production and market systems. Meat is a reliable source of protein, with a majority of the world population consumes meat. To meet the increasing demands of meat production as well as address issues, such as current environmental pollution, animal welfare, and outbreaks, cellular agriculture has emerged as one of the next industrial revolutions. Lab grown meat or cell cultured meat is a promising way to pursue this; however, it still needs to resemble traditional meat and be assured safety for human consumption. Further, to mimic the palatability of traditional meat, the process of cultured meat production starts from skeletal muscle progenitor cells isolated from animals that proliferate and differentiate into skeletal muscle using cell culture techniques. Due to several lacunae in the current approaches, production of muscle replicas is not possible yet. Our review shows that constant research in this field will resolve the existing constraints and enable successful cultured meat production in the near future. Therefore, production of cultured meat is a better solution that looks after environmental issues, spread of outbreaks, antibiotic resistance through the zoonotic spread, food and economic crises.

20.
Polymers (Basel) ; 13(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34451174

RESUMEN

For the removal of pollutants, a modified TiO2 photocatalyst is attracting attention. Fe-doped TiO2 nanofibers were prepared through a combination of electrospinning and calcination. Morphological characterization of the sample was conducted using field-emission scanning electron and transmission electron microscopy. The crystal structure of each sample was analyzed using high-resolution transmission electron microscopy, selected area electron diffraction, and Fast Fourier Transform imaging. The average diameter of the Fe-doped TiO2 nanofibers was measured to be 161.5 nm and that of the pure TiO2 nanofibers was 181.5 nm. The crystal phase when heat treated at 350 °C was anatase for TiO2 nanofibers and rutile for Fe-doped TiO2 nanofibers. The crystal phase of the TiO2 matrix was easily transitioned to rutile by Fe-doping. The photocatalytic performance of each sample was compared via the photodegradation of methylene blue and acid orange 7 under ultraviolet and visible light irradiation. In the Fe-doped TiO2 nanofibers, photodegradation rates of 38.3% and 27.9% were measured under UV irradiation and visible light, respectively. Although other catalysts were not activated, the photodegradation rate in the Fe-doped TiO2 nanofibers was 9.6% using acid orange 7 and visible light. For improved photocatalytic activity, it is necessary to study the concentration control of the Fe dopant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...